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Geophysical Fluid Dynamics
•

 

The object:

 

study of naturally occurring large‐scale flows on  the Earth

•

 

Two features:

 

rotation of the Earth;

vertical density stratification of the medium
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Internal Gravity Waves

-

 

Waves that exist in stratified fluids due to gravitational restoring forces

Wave propagating in 2D:  )(
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Geophysical Fluid Dynamics (GFD)Geophysical Fluid Dynamics (GFD)

Internal waves (IWs) in GFD

Generation Propagation Nonlinear interactions Dissipation

Energy transfer in 
internal wave field rate of ocean 

mixing

GM spectrum

- Plays an important role in climate 
variability

-- Most uncertain component of  
ocean General Circulation Model

Describes internal wave field 
that is horizontally isotropic 
and vertically symmetric

Remarkable fact: GM has much the same shape in the ocean

Nonlinear wave interactions smooth out any spectral irregularity

 

by 
redistributing energy within the spectrum



Resonant triads
A resonant wave is a wave satisfying the dispersion relation and propagating at the 
frequency and the wave-number produced by two primary waves

A triad of internal waves can interact resonantly among themselves if the linear dispersion 
relation satisfies
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Previous studies

Analytic approach:
The energy distribution is well understood for the case of a single triad

Statistical approach and Numerical analysis
Do not explain the nature of nonlinear interactions.

Need a better model
based on physics of IWs 0ω

1ω

2ω

3ω

4ω

5ω

6ω



Resonant interactions
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The advective term in the density equation is written in the 
linearized form:
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Look for solutions ( ) ( )iii
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The nonlinear interactions become evident only in the second order 
problem:
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For resonant terms
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Example:
 
Two resonant triads
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For this case,

( )

( ) ( )
( ) ( )
( ) ( )zmBBAAzmBBAA

zmBBAAzmBBAA
zmBBAAzmBBAA

zmAk
k iiij

i

i

i

4453355355433443

1132233222311331

3354455433211221

/
2

2

25

1

sincos)(sincos)(
sincos)(sincos)(
sincos)(sincos)(

sincos

θθ
θθ
θθ

θ
ω

+++
++++
++++

=Σ
=

( ) ( ) ( ) ( )ijji
ji

ji
jiji

j

i
jij

ji

ji
ij kmkm

kk
m

mmfkk
k

Nk
kk

B −×
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+++++=

ωω
ωω

ωω 22
2

2
1



Evolution equations
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Two questions

Are resonant interactions in fact possible?

How do the wave amplitudes evolve in time?



Solutions to the resonance conditions

Sum reactions:

Given

Synchronism condition: 0
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The high frequency wave               is assumed to be known.( )00 , Kω
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aspect ratio 

The idea is to treat y as known and see if we can solve for x.
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Solutions to the resonance conditions
Difference reactions:

 
In this case wave 1 (one of the low frequency 

waves) is known, and we choose the mode number of wave 0, i.e., after 
switching the indices on waves 0 and 1, we have 

Synchronism condition:
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[1] There may be as many as four solutions;

[2] While we could assume           for the sum reactions, this is 
not true for difference reactions     positive and negative values 
of      must be considered.
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Resonant triad model
Generates an arbitrary large number of resonant triads of IWs in space with 
frequencies spanning the range of possible frequencies;
Generates the evolution equations for the amplitudes for each obtained 
resonant wave;
Wave amplitudes are initialized on a chose of the initial energy spectrum;
The obtained evolution equations to determine the temporal evolution of 
each wave are solved;
The temporal evolution of energy distribution among the various possible 
wave numbers and frequencies based on the previous results is computed.

NOTE: The model can be used to determine the temporal evolution of an 

arbitrarily chosen initial energy spectrum.
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Initial amplitudes expressed in terms of the GM spectrum:
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number of waves in each frequency band at given mode number. 
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Basic Idea

Schematic to illustrate the process of generation of resonant triads in             space. 
All triads are generated from initial base wave of frequency    . The level 0 triads 
are plotted by a solid red line. Level 1 triads are plotted by a blue line and Level 2 
triads are plotted by green dots. 

( )−n,ω
0ω

Mode number

0ω1ω2ω3ω4ω 5ω 6ω 7ω8ω 9ω 10ω 11ω 12ω



100 000 resonant triads



Two energy spectrums









Results
Evolution of the wave’s amplitudes to 
predict the evolution of the internal wave 
energy spectrum

Solve the system of 200 000 differential  
equations











Other results & Conclusions
Evolution of the GM spectrum at different latitudes;
Forced waves (energy inflow);
Modified GM spectrum;
GATE (Global Atlantic Tropical Experiment, 1974) shows a 
prominent  tidal peak at the tidal frequency

Oscillatory nature of the model;
The GM model represents the stable state
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